مبانی نظری و پیشینه پژوهشی بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون های فلزی

نوع فایل
rar
حجم فایل
369 کیلوبایت
تعداد صفحه
60
تعداد بازدید
299 بازدید
۹,۹۰۰ تومان
5/5 - (1 امتیاز)

با سحافایل در خدمت شما هستیم با «پیشینه پژوهشی و تحقیق و مبانی نظری بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون های فلزی» که بطور کامل و جامع به این مبحث پرداخته و نیاز شما را به هرگونه جستجوی بیشتری برطرف خواهد نمود.

فهرست محتوا

 

 

 

مروری بر منابع مطالعاتی و مبانی نظری

2-1- ویژگی­های نیمه­رساناها

2-1-1- حامل­های بار در نیمه­رساناها

2-1-2- انواع نیمه­رساناها

2-1-2-1- نیمه­رساناهای ذاتی

2-1-2-2- نیمه­رساناهای غیرذاتی

2-2- خواص یک فتوکاتالیست مناسب

2-2-1- فتوکاتالیست­های بررسی شده

2-3- تیتانیا

2-3-1- خواص فیزیکی و شیمیایی دی­اکسید تیتانیوم

2-3-2- ساختارهای دی­اکسید تیتانیوم

2-3-3- خاصیت فتوکاتالیستی تیتانیا

2-4- اصول اولیه فرآیندهای فتوکاتالیستی

2-4-1- تهییج فوتونی از طریق باندگپ

2-4-2- موقعیت­های لبه باند

2-4-3- اثرات اندازه کوانتومی

2-4-4- ترکیب مجدد جفت­های الکترون- حفره

2-4-5- نقش الکترون­ها و حفره­های تولید شده در اثر پرتوتابی در فتوکاتالیست

2-4-6- اکسیداسیون فتوکاتالیستی ترکیبات آلی

2-5- پارامترهای موثر بر افزایش خاصیت فتوکاتالیستی TiO2 در نور مرئی

2-5-1- شکل و اندازه ذرات

2-5-2- ساختار کریستالی

2-5-3- بمباران یونی

2-5-4- تکنیک های ترکیب

2-5-5- اضافه کردن یون­های غیر فلزی

2-5-6- آلاییدن نیمه­هادی­ها با انواع یون­های فلزی

2-6- تاریخچه کاربردهای تیتانیا

2-7- کاربردهای تیتانیا

2-7-1- فوتوکاتالیز کردن

2-7-1-1- کاربردهای فتوکاتالیستی

2-7-1-1-1 تجزیه نوری آب
2-7-1-1-2 ضدعفونی
2-7-1-1-3 تصفیه هوا

2-7-1-1-4 تصفیه آب

2-8- فرآیند سل- ژل

2-8-1- اصول فرآیند سل-ژل

مراجع

 

-1  ویژگی­های نیمه­رساناها

نیمه­رساناها گروهی از مواد هستند که رسانایی الکتریکی آن­ها بین فلزات و عایق­ها قرار دارد. ویژگی مهم این مواد این است که رسانایی آن­ها با تغییر دما، تحریک نوری و میزان ناخالصی، به نحو قابل ملاحظه­ای تغییر
می­کند. ساختار الکترونی نیمه­رساناها شامل دو نوار انرژی است، نوار بالایی موسوم به نوار هدایت و نوار پایینی موسم به نوار ظرفیت است، شکاف میانی فاقد هرگونه تراز انرژی مجاز برای اشغال الکترون­هاست و نوار ممنوعه نامیده می­شود [4]. مواد نیمه­رسانا در صفر کلوین اساساً همان ساختار عایق­ها را دارند. تفاوت بین نیمه­رساناها در اندازه نوار ممنوعه Eg است که در نیمه­رساناها خیلی کوچک­تر از عایق­هاست. شکاف انرژی نسبتاً کوچک در نیمه­رساناها امکان تحریک الکترون­ها را از نوار پایینی (ظرفیت) به نوار بالایی (هدایت) با مقدار کافی از انرژی نوری یا گرمایی فراهم می­سازد. مثلاً در دمای معمولی یک نیمه­رسانا با شکاف نوار eV1 دارای تعداد قابل توجهی الکترون است که با تحریک گرمایی از طریق شکاف انرژی به نوار هدایت رفته­اند. در حالی­که یک عایق باeV 10=Eg  دارای تعداد ناچیزی از این­گونه برانگیختگی­ها خواهد بود. بنابراین اختلاف مهم بین مواد
نیمه­رسانا و عایق این است که الکترون­های موجود برای هدایت جریان را می­توان به­میزان زیادی به وسیله انرژی گرمایی یا نوری در نیمه­رساناها افزایش داد [5].

2-1-1  حامل­های بار در نیمه­رساناها

با تابش نور به یک نیمه­رسانا برخی از الکترون­های نوار ظرفیت، انرژی لازم را برای برانگیخته شدن به نوار هدایت بدست می­آورند. حاصل، ماده­ای با تعدادی الکترون در یک نوار هدایت تقریبا خالی و تعدادی حالت اشغال نشده در نوار ظرفیت تقریبا پر است. برای سهولت، از یک حالت خالی در نوار ظرفیت به نوار هدایت به وجود آیند، آن­ها را زوج الکترون- حفره می­نامند. در مطالعه نیمه­رساناها، از این الکترون­ها و حفره­ها به­عنوان حامل­های بار یاد می­شود [6].

2-1-2  انواع نیمه­رساناها

باتوجه به مکان تراز فرمی و میزان حامل های بار آزاد، این دسته از مواد را می­توان به دو گروه زیر تقسیم کرد:

نیمه­رساناهای ذاتی

نیمه­رساناهای غیر ذاتی

1 Band gap

1 Instrinsic semiconductor

2 Extrinsic semiconductor

 

فهرست منابع

[1] Parmon, V., A. V. Emeline, and N. Serpone. “Glossary of terms in photocatalysis and radiocatalysis.” Int. J. Photoenergy 4 (2002): 91-131.

[2] Mills, A., and Stephen, H. “An overview of semiconductor photocatalysis.” Journal of photochemistry and photobiology A: Chemistry 108.1 (1997): 1-35.

[3] Fujishima, A. “Electrochemical photolysis of water at a semiconductor electrode.” nature 238 (1972): 37-38.

[4]  پ. ک. ام.، نیمه رساناها، تهران؛ انجمن فیزیک ایران، 1370.

[5]  پ. رابرت، مبانی نیمه رسانا، تهران؛ دانشگاه صنعتی شریف، 1372.

[6] Streetman, Ben G., and Sanjay, B. Solid state electronic devices. Vol. 2. Englewood Cliffs, NJ: Prentice-Hall, (1995).

[7]  Kera, Y., H. Kominani, and S. Murakami. “Photocatalysis: science and technology.” Tokyo: Kodansha, Springer (2002): 29-49.

[8] Hagfeldt, A., and Michael, G. “Light-induced redox reactions in nanocrystalline systems.” Chemical Reviews 95.1 (1995): 49-68.

[9] Kamat, Prashant V. “Photochemistry on nonreactive and reactive (semiconductor) surfaces.” Chemical Reviews 93.1 (1993): 267-300.

[10] Serpone, N., and Ezio P., eds. Photocatalysis: fundamentals and applications. New York: Wiley, (1989).

[11] WU. Ling. ”  New Synthetic Routes to Nanostructured Photocatalysts With High Activity” . The Chinese University of Hong Kong, (2004).

[12] M. Gratzel, Photoelectrochemical cells, Nature 414 (2001) 338-344.

[13] Akurati, K. Synthesis of TiO2 Based Nanoparticles for Photocatalytic Applications. Cuvillier Verlag, (2008).

[14] W. li, “Metalorganic chemical vapor deposition and characterization of TiO2 nanoparticles”, dissertation for degree of doctor of philosophy, university of Delaware, (2004).

[15] Mathews, N. R., et al. “TiO2 thin films–Influence of annealing temperature on structural, optical and photocatalytic properties.” Solar Energy 83.9 (2009): 1499-1508.

[16] Ding, X., et al. “Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process.” Journal of materials science letters 14.1 (1995): 21-22.

[17] Pillai, S., et al. “Synthesis of high-temperature stable anatase TiO2 photocatalyst.” The Journal of Physical Chemistry C 111.4 (2007): 1605-1611.

[18] Padmanabhan, S,. et al. “A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania.” Chemistry of Materials 19.18 (2007): 4474-4481.

[19] Periyat, P,. et al. “One-pot synthesis of anionic (nitrogen) and cationic (sulfur) codoped high-temperature stable, visible light active, anatase photocatalysts.” The Journal of Physical Chemistry C 113.8 (2009): 3246-3253.

[20] Nolan, N,.  et al. “Effect of N-doping on the photocatalytic activity of sol–gel TiO2.” Journal of hazardous materials 211 (2012): 88-94.

[21] Dorian A., et al. “Review of the anatase to rutile phase transformation”  Mater Sci (2011) 46:855–874.

[22] Poulsen, E., and James, A. “Extractive metallurgy of titanium: a review of the state of the art and evolving production techniques.” JOM 35.6 (1983): 60-65.

[23] Diebold, U. “The surface science of titanium dioxide.” Surface science reports 48.5 (2003): 53-229.

[24] C.S. Enache. “Characterization of Thin Film Photoanodesfor Solar Water Splitting.” University of Transilvania, PhD Thesis (2012).

[26] Diebold, U., et al. “One step towards bridging the materials gap: surface studies of TiO2 anatase.” Catalysis Today 85.2 (2003): 93-100.

[27] Ding, X-Z., Z-A. Qi, and Y-Z. He. “Effect of tin dioxide doping on rutile phase formation in sol-gel-derived nanocrystalline titania powders.” Nanostructured materials 4.6 (1994): 663-668.

[28] Yuan, Z., and Lide, Z. “Influence of ZnO+– Fe2O3  additives on the anatase to
rutile transformation of nanometer TiO2 powders.” Nanostructured materials 10.7 (1998): 1127-1133.

[29] ر. پیتر، مبانی نیمه هادی­ها، ترجمه م. مروج فرشی، موسسه انتشارات علمی دانشگاه صنعتی شریف، 1372.

[30] Souteynard, E., D. Nicolas, and J. R. Martin. “Semiconductor/metal/gas behaviour through surface-potential change.” Sensors and Actuators B: Chemical 25.1 (1995): 871-875.

[31] Fujishima, A. “Electrochemical photolysis of water at a semiconductor electrode.” nature 238 (1972): 37-38.

[32] Goswami, D. Yogi. “Engineering of solar photocatalytic detoxification and disinfection process.” Advances in Solar Energy 10, (1995).

[33] Linsebigler, Amy L., Guangquan Lu, and John T. Yates Jr. “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.” Chemical reviews 95.3 (1995): 735-758.

[34] Wade, J., An investigation of TiO2-ZnFe2O4 nanocomposites for visible light photocatalysis. Diss. University of South Florida, (2005).

[35] Fujishima, A., Kazuhito, H., and Toshiya, W. TiO2 photocatalysis: fundamentals and applications. BKC Incorporated, (1999).

[36] Kormann, C., et al. “Preparation and characterization of quantum-size titanium dioxide.” The Journal of Physical Chemistry 92.18 (1988): 5196-5201.

[37] Almquist, B., and Pratim, B. “Role of Synthesis Method and Particle Size of Nanostructured TiO2 on Its Photoactivity.” Journal of Catalysis 212.2 (2002): 145-156.

[38] Shapovalov, V., et al. “Nature of the excited states of the rutile TiO2 (110) surface with adsorbed water.” Surface science 498.1 (2002): 103-108.

[39] Kudo, A., and Yugo, M. “Heterogeneous photocatalyst materials for water splitting.” Chemical Society Reviews 38.1 (2009): 253-278.

[40] Fujishima, A., et al. “Titanium dioxide photocatalysis.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1.1 (2000): 1-21.

[41] Linsebigler, L., et al. “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.” Chemical reviews 95.3 (1995): 735-758.

[42] Abe, Ryu. “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation.” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 11.4 (2010): 179-209.

[43] Tian, J., et al. “N-doped TiO2/ZnO composite powder and its photocatalytic performance for degradation of methyl orange.” Surface and Coatings Technology 204.5 (2009): 723-730.

[44] D.M. Antonelli, J.Y. Ying, “Synthesis of Hexagonally Packed Mesoporous TiO2 By A Modified Sol-Gel Method”, Angewandte Chemie, 34 (1995) 2014-2017.

[45] T. Sreethawong, Y. Yamada, T. Kobayashi, S. Yoshikawa, “Catalysis of Nanocrystalline Mesoporous TiO2 On Cyclohexene Epoxidation With H2O2: Effects of Mesoporosity and Metal Oxide Additives”, Journal of Molecular Catalysis A: Chemical 241 (2005) 23–32.

[46] N. Koshitani, S. Sakulkhaemaruethai, Y. Suzuki, S. Yoshikawa, “Preparation of Mesoporous Titania Nanocrystals Using Alkylamine Surfactant Templates”, Ceramics International, 32 (2006) 829-824.

[47] Hao, W. C., et al. “Comparison of the photocatalytic activity of TiO2 powder with different particle size.” Journal of materials science letters 21.20 (2002): 1627-1629.

[48] Wu, Chunying, et al. “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations.” Catalysis Today 93 (2004): 863-869.

[49] Anpo, M,. “Applications of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale.” Studies in surface Science and Catalysis 130 (2000): 157-166.

[50] Premkumar, J,. “Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light.” Chemistry of materials 16.21 (2004): 3980-3981.

[50] Mazloumi, M., et al. “Ultrasonic induced photoluminescence decay in sonochemically obtained cauliflower-like ZnO nanostructures with surface 1D nanoarrays.” Ultrasonics sonochemistry 16.1 (2009): 11-14.

[51] Diebold, U. “The surface science of titanium dioxide.” Surface science reports 48.5 (2003): 53-229.

[52] N.L.Wu, MS. Lee, “Enhanced TiO2 Photocatalysis By Cu in Hydrogen Production From Aqueous Methanol Solution” Int. J. Hydrogen Energy, 29 (2004) 1601–1605.

[53] St. John MR, A.J. Furgals, A.F. Sammells, “Hydrogen Generation By Photocatalytic Oxidation of Glucose By Platinized N-TiO/Sub2/Powder”, J. Phys Chem, 87 (1983) 801-805.

[54] H. Park, J. Lee, W. Choi, “Study of Special Cases Where the Enhanced Photocatalytic Activities of Pt/TiO2 Vanish Under Low Light Intensity”, Catalysis Today 111 (2006) 259–265.

[55] I.H. Tseng, W.C. Chang, J.C.S. Wu. “Photoreduction of CO2 Using Sol–Gel Derived Titania and Titania-Supported Copper Catalysts”, Appl Catal B Environ, 37 (2002) 37-48.

[56] P.V. Kamat, M. Flumiani, A. Dawson, “Metal-Metal and Metal-Semiconductor Composite Nanoclusters”, Colloids and Surfaces A-Physicochemical and Engineering Aspects, 202 (2002) 269-279.

[57] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy,”A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 For Hydrogen Production”, Renewable and Sustainable Energy Reviews, 11 (2007) 401–425.

[58] W.Y. Choi, A.Termin, M.R. Hoffmann, “The Role of Metal-Ion Dopants in Quantum- Sized TiO2: Correlation Between Photoreactivity and Charge-Carrier Recombination Dynamics”, J Phys Chem, 84 (1994)13669-13679.

[59] A. Hameed, M.A. Gondal, Z.H. Yamani, “Effect of Transition Metal Doping on Photocatalytic Activity of WO3 For Water Splitting Under Laser Illumination: Role of 3d- Orbitals”, Catal Commun, 5 (2004) 715-719.

[60] J.C. Xu, et al. “Doping Metal Ions Only Onto the Catalyst Surface”, J Mol Catal A: Chem, 219 (2004) 351-355.

[61] M. Kaneko, I. Okura. ” Photocatalysis: science and technology “. Springer-Verlag, 2002.

[62] Nishikawa, T., et al. “An exploratory study on effect of the isomorphic replacement of Ti4+ ions by various metal ions on the light absorption character of TiO2.” Journal of Molecular Structure: THEOCHEM 545.1 (2001): 67-74.

[63] Fujishima, A,. “Electrochemical photolysis of water at a semiconductor electrode.” nature 238 (1972): 37-38.

[64] Frank, N., and Allen, J. “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder.” Journal of the American Chemical Society 99.1 (1977): 303-304.

[65] Ohnishi, T., et al. “The Quantum Yield of Photolysis of Water on TiO2 Electrodes.” Berichte der Bunsengesellschaft für physikalische Chemie 79.6 (1975): 523-525.

[66] Kraeutler, B., et al. “Heterogeneous photocatalytic synthesis of methane from acetic acid-new Kolbe reaction pathway.” Journal of the American Chemical Society 100.7 (1978): 2239-2240.

[67] Pruden, A, et al. “Photoassisted heterogeneous catalysis: the degradation of trichloroethylene in water.” Journal of Catalysis 82.2 (1983): 404-417.

[68] Matsunaga, T., et al. “Photoelectrochemical sterilization of microbial cells by semiconductor powders.” FEMS Microbiology letters 29.1 (1985): 211-214.

[69] Fujishima, A., et al. “Behavior of tumor cells on photoexcited semiconductor surface.” Photomed. Photobiol 8 (1986): 45-46.

[70] O’regan, Brian, and M. Grfitzeli. “A low-cost, high-efficiency solar cell based on dye sensitized.” nature 353 (1991): 737-740.

[71] Wang, Rong, et al. “Light-induced amphiphilic surfaces.” Nature 388 (1997): 431-432.

[72] O. Carp, C.L. Huisman, A. Reller.  “Photoinduced reactivity of titanium dioxide.” Progress in Solid State Chemistry 32 (2004) 33–177.

[73] Zhang, X., et al. “Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment.” Water research 43.5 (2009): 1179-1186.

[74] Sunada, K., et al. “Bactericidal and detoxification effects of TiO2 thin film photocatalysts.” Environmental Science & Technology 32.5 (1998): 726-728.

[75] Gordillo D., et al. “Titanium dioxide nanocrystalline bactericidal thin films grown by sol–gel technique.” Microelectronics Journal 39.11 (2008): 1333-1335.

[76] Madaeni, S. S., and N. Ghaemi. “Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation.” Journal of Membrane Science 303.1 (2007): 221-233.

[77] Mor, K., et al. “Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements.” Thin Solid Films 496.1 (2006): 42-48.

[78] Zhou, L., et al. “Chemical bath deposition of thin TiO2-anatase films for dielectric applications.” Thin Solid Films 516.21 (2008): 7661-7666.

[79] Abdulla-Al-Mamun, Md, et al. “Synergistic cell-killing by photocatalytic and plasmonic photothermal effects of Ag/TiO2 core–shell composite nanoclusters against human epithelial carcinoma (HeLa) cells.” Applied Catalysis A: General 398.1 (2011): 134-142.

[80] Zhang, A., and Yan-Ping, S. “Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells.” World Journal of Gastroenterology 10.21 (2004): 3191-3193.

[81] Park, J., et al. “Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting.” Nano letters 6.1 (2006): 24-28.

[82] Popov, A. P., et al. “TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens.” Journal of Physics D: Applied Physics 38.15 (2005): 2564.

[83] Biju, P., and Mahaveer,  K.  “Effect of crystallization on humidity sensing properties of sol–gel derived nanocrystalline TiO2 thin films.” Thin Solid Films 516.8 (2008): 2175-2180.

[84] Xie, R., Jian-Ku S., and Pinggui, W. “Quaternary oxides and catalysts containing quaternary oxides.” U.S. Patent No. 8,541,337. 24 Sep. (2013).

[85] Cushing, B., et al. “Recent advances in the liquid-phase syntheses of inorganic nanoparticles.” Chemical reviews 104.9 (2004): 3893-3946.

[86] Brinker, J., and George W. Sol-gel science: the physics and chemistry of sol-gel processing. Academic press, (2013).

[87] Green,  J. An introduction to the mechanical properties of ceramics. Cambridge University Press, (1998).

[88] Sanchez, C., et al. “Chemical modification of alkoxide precursors.” Journal of Non-Crystalline Solids 100.1 (1988): 65-76.

[89] Pierre, A. Introduction to sol-gel processing. Vol. 1. Springer, (1998).

[90] ب. کوزه­گر کالجی، “بررسی اثر افزودنی­های Nb2O5  و SnO2 در رفتار فتوکاتالیستی پوشش­های نانوساختار دی اکسید تیتانیم بر زیر لایه پرسلانی”، پایان نامه دکترا، دانشگاه تربیت مدرس، (1390).

[91] Instruments, M. “Dynamic Light Scattering: An Introduction in 30 Minutes. pdf, consultado a 31 (2013).

[92] Patterson, A. L. “X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials.” Journal of the American Chemical Society 77.7 (1955): 2030-2031.

[93] Spurr,  A., and Howard,  M. “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer.” Analytical Chemistry 29.5 (1957): 760-762.

[94] Mohammadi, M. R., et al. “Preparation of  high surface area titania (TiO2) films and powders using particulate sol–gel route aided by polymeric fugitive agents.” Sensors and Actuators B: Chemical 120.1 (2006): 86-95.

[95] Mohammadi, M. R., et al. “Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters.” Journal of sol-gel science and technology 40.1 (2006): 15-23.

[96] Tauc, J., R. Grigorovici, and A. Vancu. “Optical properties and electronic structure of amorphous germanium.” physica status solidi (b) 15.2 (1966): 627-637.

[97] Kumar, P., et al. “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states.” Thin Solid Films 358.1 (2000): 122-130

[98] Fujishima, A., et al. “TiO2 photocatalysts and diamond electrodes.” Electrochimica acta 45.28 (2000): 4683-4690.

[99] Stamate, M., and Gabriel, L. “Application of titanium dioxide photocatalysis to create self-cleaning materials.” Romania: Bacau University, Bacau, Calea Marasesti 157 (2007).

[100] Dhere, Sunetra L., et al. “Transparent water repellent silica films by sol–gel process.” Applied Surface Science 256.11 (2010): 3624-3629.

[101] Daneshvar, N., A. Aleboyeh, and A. R. Khataee. “The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model.” Chemosphere 59.6 (2005): 761-767.

[102] م. هوایی، ” پایان­نامه فن­آوری نانو مرتبط با دی اکسید تیتانیم” ماهنامه فر­آوری نانو، شماره 4، پیاپی 153، سال 1389، 30-35.

[103] Parra, S. P. “Coupling of photocatalytic and biological proceses as a contribution to the detoxification of water: catalytic and technological aspects.” École Polytechnique Fédérale de Lausanne (2001).

[104] Kudo, A., Yugo, M. ” materials for water splitting.” Chemical Society Reviews 38.1 (2009): 253-278.

[105] Mills, A., Michael M. “Current and possible future methods of assessing the activities of photocatalyst films.” Catalysis Today 129.1 (2007): 22-28.

[106] Livage, J., Dibyendu, G. “Sol–gel electrochromic coatings and devices: a review.” Solar energy materials and solar cells 68.3 (2001): 365-381.

[107] ز. نوری مطلق، ر. درویشی .”بررسی عوامل موثر بر رنگ­بری متیلن بلو با استفاده از پرتودهی فرابنفش در حضور کاتالیست تثبیت شده.” مجله علمی دانشگاه علوم پزشکی ایلام. دوره بیست و یکم، (1392).

[108] Brinker, C., Alan J. “Fundamentals of sol-gel dip-coating.” Journal de Physique III 4.7 (1994): 1231-1242.

[109] Pawar, J., et al. “Ce3+ Doped TiO2 Nanoparticles; Synthesis and Photocatalytic Activity.” International Journal of Emerging Sciences 2.1 (2012): 149.

[110] ی. فرهنگ قوجه بیگلو، “ساخت غشاء تیتانیا- سیلیکا با پایه آلومینا برای جداسازی N2 از گاز شهری.” پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، (1390).

[111] Ehrman, S., et al. “Phase segregation in binary SiO2/TiO2 and SiO2/Fe2O3 nanoparticle aerosols formed in a premixed flame.”

Journal of Materials Research 14.12 (1999): 4551-4561.

[112] Pavlova, B., et al. “Preparation and structure of stable dispersions of uniform TiO2 nanoparticles.” Materials Science-Poland 25.3 (2007).

[113] Lu, G. Q., et al. “Inorganic membranes for hydrogen production and purification: a critical review and perspective.” Journal of colloid and interface science 314.2 (2007): 589-603.

[114] Mahanty, S., et al. “Effect of Sn doping on the structural and optical properties of sol–gel TiO2 thin films.” Journal of Crystal Growth 261.1 (2004): 77-81.

[115] Sun, X., et al. “Preparation and characterization of Ce/N-Codoped TiO2 particles for production of H2 by photocatalytic splitting water under visible light.” Catalysis letters 135.3-4 (2010): 219-225.

[116] Verma, A., et al. “Effect of stabilizer on structural, optical and electrochemical properties of sol–gel derived spin coated TiO2 films.” Solar energy materials and solar cells 88.1 (2005): 47-64.

[117] Lu, J., et al. “Synthesis and characterization of TiO2 nanopowders from peroxotitanium solutions.” Materials chemistry and Physics 115.1 (2009): 142-146.

[118] Deshpande, S., et al. “Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide.” Applied Physics Letters 87.13 (2005): 133113-133113.

[119] Shah, S. I., et al. “Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles.” Proceedings of the National Academy of Sciences of the United States of America 99.Suppl 2 (2002): 6482-6486.

[120] Tong, T., et al. “Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity.” Journal of colloid and interface science 315.1 (2007): 382-388.

[121] Watanabe, S., et al. “Characterization of structural and surface properties of nanocrystalline TiO2− CeO2 mixed oxides by XRD, XPS, TPR, and TPD.” The Journal of Physical Chemistry C 113.32 (2009): 14249-14257.

[122] Liu, T., et al. “Enhanced photocatalytic activity of Ce3+-TiO2 hydrosols in aqueous and gaseous phases.” Chemical engineering journal 157.2 (2010): 475-482.

[123] Yu, T., et al. “Characterization, activity and kinetics of a visible light driven photocatalyst: Cerium and nitrogen co-doped TiO2 nanoparticles.” Chemical Engineering Journal 157.1 (2010): 86-92.

[124] Pavasupree, S., et al. “Preparation and characterization of mesoporous MO2
(M= Ti, Ce, Zr, and Hf) nanopowders by a modified sol–gel method.” Ceramics International 31.7 (2005): 959-963.

[125] Shirsath, S. R., et al. “Ultrasound assisted synthesis of doped TiO2 nano-particles: Characterization and comparison of effectiveness for photocatalytic oxidation of dyestuff effluent.” Ultrasonics sonochemistry 20.1 (2013): 277-286.

[126] Fresno, F., et al. “Influence of the structural characteristics of Ti1-xSnxO2 nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors.” Applied Catalysis B: Environmental 55.3 (2005): 159-167.

[127] Tai, W., Jae-Hee, O. “Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films.” Sensors and Actuators B: Chemical 85.1 (2002): 154-157.

[128] Kumar, K. P., et al. “Enhanced anatase-to-rutile phase transformation without exaggerated particle growth in nanostructured titania–tin oxide composites.” Scripta materialia 57.8 (2007): 771-774.

[129] Xu, Y. L. “The basics of semiconducting oxides and compounds.” Press of Xi’an Electronic Science and Technology University, Xi’an (1991): 48.

[130] Sayılkan, F., et al. “Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate.” Journal of Hazardous Materials 162.2 (2009): 1309-1316.

[131] St. John, M. R., et al. “Hydrogen generation by photocatalytic oxidation of glucose by platinized n-titania powder.” The Journal of Physical Chemistry 87.5 (1983): 801-805.

[132] م. ادیانی، ” بررسي تاثير آلايش عناصر آهن، گادولينيوم و فسفر بر روي خواص فيزيكي، شيميايي و فتوكاتاليستي نانوذرات تيتانيا”، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شریف، (1392).

[133] Mahshid, S., et al. “Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution.” Semicond Phys Quantum Electron Optoelectron 9.2 (2006): 658.

[134] Chen, Xiaobo, and Samuel S. Mao. “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.” Chemical reviews 107.7 (2007): 2891-2959.

[135] Choi, W., et al. “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics.” The Journal of Physical Chemistry 98.51 (1994): 13669-13679.

[136] Li, X. Z., and F. B. Li. “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment.” Environmental science & technology 35.11 (2001): 2381-2387.

[137] Li, X. Z., et al. “Photocatalytic activity of WOx-TiO2 under visible light irradiation.” Journal of Photochemistry and Photobiology A: Chemistry 141.2 (2001): 209-217.

[138] Cao, Y., et al. “Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition.” New J. Chem. 28.2 (2004): 218-222.

[139] Elidrissi, B., et al. “Structural and optical properties of CeO2 thin films prepared by spray pyrolysis.” Thin Solid Films 379.1 (2000): 23-27.

[140] Zheng, S-Y., et al. “Optical properties of sputter-deposited cerium oxyfluoride thin films.” Applied optics 32.31 (1993): 6303-6309.

[141] Xiufeng, Z., et al. “Preparation of crystalline Sn-doped TiO2 and its application in visible-light photocatalysis.” Journal of Nanomaterials 2011 (2011): 47.

[142] Xin, B., et al. “Preparation of nanocrystalline Sn–TiO2 via a rapid and simple stannous chemical reducing route.” Applied Surface Science 255.11 (2009): 5896-5901.

[143] Hiroshi, Y., H. Shiqeo, and Y. Shoji. “Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates of clay [J].” Journal of Physical Chemistry 93.12 (1989): 4833-4837.

[144] Valencia, S., et al. “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment.” Open Materials Science Journal 4.1 (2010): 9-14.

[145] Zhu, T., and Shang, G. “The stability, electronic structure, and optical property of TiO2 polymorphs.” The Journal of Physical Chemistry C (2013).

[146] Chen, W., et al. “Electronic properties of anatase TiO2 doped by lanthanides: A DFT+ U study.” Physica B: Condensed Matter 407.6 (2012): 1038-1043.

[147] Ghrairi, N., and Mongi, B. “Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique.” Nanoscale research letters 7.1 (2012): 1-7.

[148] áJames McQuillan, A., and J. Martin. “Characterisation and activity of sol–gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives.” Journal of Materials Chemistry 10.10 (2000): 2358-2363.

[149] Rodriguez, R., et al. “Modification of the phase transition temperatures in titania doped with various cations.” Journal of materials research 12.02 (1997): 439-443.

[150] Sanjines, R., et al. “Electronic structure of anatase TiO2 oxide.” Journal of Applied Physics 75.6 (1994): 2945-2951.

[151] Xie, J., et al. “Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 372.1 (2010): 107-114.

[152] Qingju, L., et al. “Preparation and super-hydrophilic properties of TiO2/SnO2 composite thin film.” Mater. Res. Bull 37 (2002): 2255-2262.

[153] Wang, J., W. Wu, and D. Feng. “The introduction of electronic spectroscopy.” The Publishing House of Defense Industry, Beijing (1992).

[154] Xie, J. M., et al. “Colloids Surf. A: Phys.” Chem. Eng. Asp 372 (2010): 107-114.

[155] Yan, N., et al. “Preparation and properties of Ce-doped TiO2 photocatalyst.” Materials Research Bulletin 47.8 (2012): 1869-1873.

[156] Liu, Z., et al. “Preparation and characterization of cerium oxide doped TiO2 nanoparticles.” Journal of Physics and Chemistry of Solids 66.1 (2005): 161-167.

[157] Li, B., et al. “Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercapto benzothiazole degradation in aqueous suspension for odour control.” Applied Catalysis A: General 285.1 (2005): 181-189.

[158] Colmenares, J. C., et al. “Synthesis, characterization and photocatalytic activity of different metal-doped titania systems.” Applied Catalysis A: General 306 (2006): 120-127.

[159] Xiao, Qi, et al. “One-step hydrothermal preparation and photocatalytic activity of
(C, S, Sm)-tridoped mesoporous TiO2 photocatalyst under visible light irradiation.” Materials Chemistry and Physics 124.2 (2010): 1210-1215.

[160] Sing, K. S. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984).” Pure and applied chemistry 57.4 (1985): 603-619.

[161] Wark, M., et al. “Photocatalytic activity of hydrophobized mesoporous thin films of TiO2.” Microporous and mesoporous materials 84.1 (2005): 247-253.

[162] Sing, K. S., & Gregg, S. J. “Adsorption, surface area and porosity.” Academic Press, London (1982): 1-5.

[163] Zhou, W., et al. “Preparation and properties of vanadium-doped TiO2 photocatalysts.” Journal of Physics D: Applied Physics 43.3 (2010): 035301.

[164] Yu, J. C., et al. “Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.” Chemistry of Materials 15.11 (2003): 2280-2286.

[165] Xiao, J., et al. “Preparation, phase transformation and photocatalytic activities of cerium-doped mesoporous titania nanoparticles.” Journal of Solid State Chemistry 179.4 (2006): 1161-1170.

[166] Nasir, M., et al. “Study of Synergistic Effect of Ce-and S-Codoping on the Enhancement of Visible-Light Photocatalytic Activity of TiO2.” The Journal of Physical Chemistry C 117.18 (2013): 9520-9528.

 

[167] T. Ivanova, A. Harizanova, M. Surtchev, “Formation and investigation of sol–gel TiO2–V2O5 system.” J. Mater. Lett. 55(2002): 327-333.

[168] Maira, A. J., et al. “Fourier Transform Infrared Study of the Performance of Nanostructured TiO2 Particles for the Photocatalytic Oxidation of Gaseous Toluene.” Journal of Catalysis 202.2 (2001): 413-420.

[169] Sugapriya, S., et al. ” Effect of annealing on TiO2 nanoparticles.” Journal of Optik Optics 124 (2013): 4971– 4975.

[170] Djaoued, Y., et al. “Study of the phase transition and the thermal nitridation of nanocrystalline sol–gel titania films.” Journal of non-crystalline solids 297.1 (2002): 55-66.

[171] Ranjit, K. T., et al. “Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid.” Environmental science & technology 35.7 (2001): 1544-1549.

[172] Djaoued, Y., et al. “Vibrational properties of the sol-gel prepared nanocrystalline TiO2 thin films.” The Internet Journal of Vibrational Spectroscopy 5 (2001).

[173] Djaoued, Y., et al. “Study of anatase to rutile phase transition in nanocrystalline titania films.” Journal of sol-gel science and technology 24.3 (2002): 255-264.

[174] Cristallo, G., et al. “Study of anatase–rutile transition phase in monolithic catalyst V2 O5/TiO2 and V2O5–WO3/TiO2.” Applied Catalysis A: General 209.1 (2001): 249-256.

[175] National Bureau of Standards, Monograph 25, Sec. 7, 83 (1969).

راهنمای خرید:
  • به مبلغ فوق 1 درصد به عنوان کارمزد از طرف درگاه پرداخت افزوده خواهد شد.
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “مبانی نظری و پیشینه پژوهشی بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون های فلزی”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *