مبانی نظری و پیشینه پژوهشی تمرين مقاومتی و ويتامين D و کارکرد عضلانی

نوع فایل
word
حجم فایل
424 کیلوبایت
تعداد صفحه
51
تعداد بازدید
346 بازدید
۹,۹۰۰ تومان
5/5 - (2 امتیاز)

با سحافایل در خدمت شما هستیم با «پیشینه پژوهشی و تحقیق و مبانی نظری تمرين مقاومتی و ويتامين D و کارکرد عضلانی» که بطور کامل و جامع به این مبحث پرداخته و نیاز شما را به هرگونه جستجوی بیشتری برطرف خواهد نمود.

توضیحات: فصل دوم پایان نامه کارشناسی ارشد (پیشینه و مبانی نظری پژوهش)

همراه با منبع نویسی درون متنی به شیوه APA جهت استفاده فصل دو پایان نامه
توضیحات نظری کامل در مورد متغیر
پیشینه داخلی و خارجی در مورد متغیر مربوطه و متغیرهای مشابه
رفرنس نویسی و پاورقی دقیق و مناسب
منبع :انگلیسی و فارسی دارد (به شیوه APA)
نوع فایل:WORD و قابل ویرایش با فرمت doc

بخش هایی از محتوای فایل پیشینه و مبانی نظری:

فهرست محتوا

فصل دوم: مبانی نظری و پیشینه تحقیق

مقدمه12

مبانی نظری تحقیق12

2-2-1  عضله اسکلتی و باز گردش پروتئین 12

2-2-2   تنظیم مولکولی رشد عضله13

2-2-3 کنترل ترجمه سنتز پروتئین14

2-2-4 کنترل نسخه برداری و هیپرتروفی عضله اسکلتی15

2-2-5 سلولهای اقماری 17

2-2-6 مسیر های سیگنالی منتج به هیپرتروفی عضلانی19

2-2-6-1 مسیر سیگنالی کالسی نورین19

2-2-6-2 مسیر سیگنالی PI3K/Akt/mTOR20

2-2-6-2 مسیر سیگنالی PI3K/Akt/ GSK3β23

2-2-7 هورمونهای مؤثر بر توده عضله اسکلتی23

2-2-7-1 تستوسترون23

2-2-7-2 فاکتور رشد شبه انسولینی نوع یک (IGF-124

2-2-8 تولید وترشح IGF-125

2-2-9 عملکرد IGF-126

2-2-10 عوامل مؤثر بر سطوح IGF-1 موجود در گردش خون26

2-2-11 محور هورمون رشد /IGF-126

2-2-12 پروتئین اتصالی به IGF-128

2-2-13 ویتامین D29

2-2-13-1 اعمال ویتامین D 33

2-2-13-2 کمبود ویتامین D34

پیشینه پژوهش 35

2-3-1 فعالیت ورزشی ،IGF-1 و IGFBP-335

2-3-2   تغذیه، قدرت و توده ی عضلانی در افراد مسن38

2-3-2-1 تغذیه و سارکوپنیا در افراد مسن38

2-3-2-2 تمرین مقاومتی و تغذیه در افراد مسن39

2-3-2-3 ویتامین D40

 

1مقدمه

در این فصل ابتدا اصول ملکولی و مسیر های سیگنالی منتج به هیپرتروفی عضلانی توضیح داده می شود و در ادامه مبانی نظری مربوط به فاکتور رشد شبه انسولین نوع یک و مسیر مولکولی منتج به رشد عضله بررسی می شود. سپس اثرات تغذیه، با تأکید بیشتر بر مکمل ویتامین D، بر توده عضلانی بحث خواهد شد. در طول فصل حاضر مطالعات انجام شده در ارتباط با موضوع تحقیق ارائه شده است.

2-2 مبانی نظری تحقیق

2-2-1 عضله اسکلتی و باز گردش پروتئین[1]

پروتئین های بدن دارای وضعیت پیوسته ای از باز گردش هستند، یعنی مداوم پروتئین های کهنه در حال تجزیه و پروتئین های جدید سنتز می شوند. در انسان حین استراحت، میزان باز گردش پروتئین بدن تقریباً 3 تا 4 گرم به ازاء هر کیلوگرم وزن بدن در روز می باشد. در یک فرد با تعادل پروتئینی، مقدار پروتئین جدیدی که سنتز می شود، با مقدار پروتئین کهنه ای که تجزیه می شود، برابر است. تغییر در توده عضله منعکس کننده عدم تعادل بین سنتز و تجزیه پروتئین است. هرگاه مقدار سنتز بیشتراز تجزیه باشد، توده عضله افزایش می یابد، و بر عکس. روی هم رفته این فرآیند ها به طور پیوسته در جریان بوده و تحت تأثیر فاکتورهایی چون در دسترس بودن مواد غذایی، هورمونها و ورزش قرار می گیرند[41].

فهرست منابع

Seene, T. and P. Kaasik, Role of exercise therapy in prevention of decline in aging muscle function: glucocorticoid myopathy and unloading. Journal of aging research, 2012. 2012.

2. Deschenes, M.R., Effects of aging on muscle fibre type and size. Sports Medicine, 2004. 34(12): p. 809-824.

3. Cruz-Jentoft, A.J., et al., Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on Sarcopenia in Older People. Age and ageing, 2010. 39(4): p. 412-423.

4. Syddall, H., et , Social Inequalities in Grip Strength, Physical Function, and Falls Among Community Dwelling Older Men and Women Findings From the Hertfordshire Cohort Study. Journal of aging and health, 2009. 21(6): p. 913-939.

5. Reis, J.G., et al., Do muscle strengthening exercises improve performance in the 6-minute walk test in postmenopausal women? Revista Brasileira de Fisioterapia, 2012. 16(3): p. 236-240.

6. Kaufert, P., et al., Women and menopause: Beliefs, attitudes, and behaviors. The North American Menopause Society 1997 menopause survey. Menopause, 1998. 5(4): p. 197-202.

7. Izquierdo, M., et al., Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Medicine and science in sports and exercise, 2001. 33(9): 1577-1587.

8. Wooten, J.S., et al., Resistance exercise and lipoproteins in postmenopausal women. International journal of sports medicine, 2011. 32(1): p. 7.

9. Corpas, E., S.M. Harman, and M.R. Blackman, Human growth hormone and human aging. Endocrine reviews, 1993. 14(1): p. 20-39.

10. Kraemer, W.J., et al., Responses of IGF-I to endogenous increases in growth hormone after heavy-resistance exercise. Journal of Applied Physiology, 1995. 79(4): p. 1310-1315.

11. Tipton, C.M., ACSM’s advanced exercise physiology2006: Lippincott Williams & Wilkins.

12. Kim, M.K., et al., Vitamin D deficiency is associated with sarcopenia in older Koreans, regardless of obesity: the Fourth Korea National Health and Nutrition Examination Surveys (KNHANES IV) 2009. Journal of Clinical Endocrinology & Metabolism, 2011. 96(10): p. 3250-3256.

13. Ward, K.A., et al., Vitamin D status and muscle function in post-menarchal adolescent girls. Journal of Clinical Endocrinology & Metabolism, 2009. 94(2): p. 559-563.

14. van Noord, P.A., et al., Age at natural menopause in a population-based screening cohort: the role of menarche, fecundity, and lifestyle factors. Obstetrical & gynecological survey, 1997. 52(11): p. 692-693.

15. McKinlay, S.M., D.J. Brambilla, and J.G. Posner, The normal menopause transition. Maturitas, 1992. 14(2): p. 103-115.

16. Sirola, J. and T. Rikkonen, Muscle performance after the menopause. Menopause International, 2005. 11(2): p. 45-50.

17. Lin, C.-M., Y.-L. Huang, and Z.-Y. Lin, Influence of gender on serum growth hormone, insulin-like growth factor-I and its binding protein-3 during aging. Yonsei medical journal, 2009. 50(3): p. 407-413.

18. Bartke, A., et al., Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology, 2003. 4(1): p. 1-8.

19. Parkhouse, W.S., et al., IGF-1 bioavailability is increased by resistance training in older women with low bone mineral density. Mechanisms of ageing and development, 2000. 113(2): p. 75-83.

20. Le Roith, D., et al., The somatomedin hypothesis: 2001. Endocrine reviews, 2001. 22(1): p. 53-74.

21. Madarame, H., K. Sasaki, and N. Ishii, Endocrine responses to upper-and lower-limb resistance exercises with blood flow restriction. Acta physiologica Hungarica, 2010. 97(2): p. 192-200.

22. Rosenfeld, R. and P. Cohen, Disorders of growth hormone/insulin-like growth factor secretion and action. Pediatric Endocrinology, ed, 2002. 2: p. 211-288.

23. Hagberg, J.M., et al., Metabolic responses to exercise in young and older athletes and sedentary men. Journal of Applied Physiology, 1988. 65(2): p. 900-908.

24. Fielding, R.A., et al., High‐velocity resistance training increases skeletal muscle peak power in older women. Journal of the American Geriatrics Society, 2002. 50(4): p. 655-662.

25. Teas, J., et al., Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutrition and cancer, 2011. 63(5): p. 743-748.

26. Bischoff-Ferrari, H.A., et al., Effect of vitamin D on falls. JAMA: the journal of the American Medical Association, 2004. 291(16): p. 1999-2006.

27. Annweiler, C., et al., Vitamin D-related changes in physical performance: a systematic review. The journal of nutrition, health & aging, 2009. 13(10): p. 893-898.

28. Cannell, J.J., et al., Athletic performance and vitamin D. Med Sci Sports Exerc, 2009. 41(5): p. 1102-10.

29. Landi, F., et al., Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clinical nutrition, 2012. 31(5): p. 652-658.

30. Bischoff‐Ferrari, H., et al., Vitamin D receptor expression in human muscle tissue decreases with age. Journal of Bone and Mineral Research, 2004. 19(2): p. 265-269.

31. Hamilton, B., Vitamin D and human skeletal muscle. Scandinavian journal of medicine & science in sports, 2010. 20(2): p. 182-190.

32. Bischoff, H.A., et al., Muscle strength in the elderly: its relation to vitamin D metabolites. Archives of physical medicine and rehabilitation, 1999. 80(1): p. 54-58.

33. Avis, N.E., et al., Is there a menopausal syndrome? Menopausal status and symptoms across racial/ethnic groups. Social science and medicine (1982), 2001. 52(3).

34. Bengtson, V.L. and K.W. Schaie, Handbook of theories of aging. 2009.

35. Sternfeld, B., et al., Menopause, physical activity, and body composition/fat distribution in midlife women. Medicine and science in sports and exercise, 2005. 37(7): p. 1195.

36. Mohammandian, S., H. Bazrafshan, and A. Sadeghinezhad, Current state of growth hormone therapy. JOURNAL OF GORGAN UNIVERSITY OF MEDICAL SCIENCES, 2004. 5(12): p. 0.

37. Hunter, G.R., J.P. McCarthy, and M.M. Bamman, Effects of resistance training on older adults. Sports medicine, 2004. 34(5): p. 329-348.

38. Trappe, S., et al., Resistance training improves single muscle fiber contractile function in older women. American Journal of Physiology-Cell Physiology, 2001. 281(2): p. C398-C406.

39. Latham, N.K., et al., A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). Journal of the American Geriatrics Society, 2003. 51(3): p. 291-299.

40. Dam, T.-T., D. von Mühlen, and E.L. Barrett-Connor, Sex-specific association of serum vitamin D levels with physical function in older adults. Osteoporosis international, 2009. 20(5): p. 751-760.

41. Houston, M.E., Gaining weight: the scientific basis of increasing skeletal muscle mass. Canadian journal of applied physiology, 1999. 24(4): p. 305-316.

42. Glass, D.J., Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nature Cell Biology, 2003. 5(2): p. 87-90.

43. Stewart, C. and J. Rittweger, Adaptive processes in skeletal muscle: molecular regulators and genetic influences. Journal of Musculoskeletal and Neuronal Interactions, 2006. 6(1): 73.

44. Booth, F., et al., Molecular and cellular adaptation of muscle in response to physical training. Acta physiologica scandinavica, 1998. 162(3): p. 343-350.

45. Kimball, S.R., P.A. Farrell, and L.S. Jefferson, Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. Journal of Applied Physiology, 2002. 93(3): p. 1168-1180.

46. Rennie, M.J., et al., Control of the size of the human muscle mass. Annu. Rev. Physiol., 2004. 66: 799-828.

47. Cameron‐Smith, D., Exercise and skeletal muscle gene expression. Clinical and experimental pharmacology and physiology, 2002. 29(3): p. 209-213.

48. Kubica, N., et al., Alterations in the expression of mRNAs and proteins that code for species relevant to eIF2B activity after an acute bout of resistance exercise. Journal of Applied Physiology, 2004. 96(2): p. 679-687.

49. Farrell, P.A., et al., Regulation of protein synthesis after acute resistance exercise in diabetic rats. American Journal of Physiology-Endocrinology And Metabolism, 1999. 276(4): p. E721-E727.

50. Adams, G.R., Satellite cell proliferation and skeletal muscle hypertrophy. Applied Physiology, Nutrition, and Metabolism, 2006. 31(6): p. 782-790.

51. Wackerhage, H. and N.M. Woods, Exercise-induced signal transduction and gene regulation in skeletal muscle. Journal of Sports Science and Medicine, 2002. 1(4): p. 103-114.

52. Morgan, J.E. and T.A. Partridge, Muscle satellite cells. The international journal of biochemistry & cell biology, 2003. 35(8): p. 1151-1156.

53. Charge, S.B. and M.A. Rudnicki, Cellular and molecular regulation of muscle regeneration. Physiological reviews, 2004. 84(1): p. 209-238.

54. Dhawan, J. and T.A. Rando, Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends in cell biology, 2005. 15(12): p. 666-673.

55. Tidball, J.G., Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology, 2005. 98(5): 1900-1908.

56. Chin, E.R., The role of calcium and calcium/calmodulin-dependent kinases in skeletal muscle plasticity and mitochondrial biogenesis. Proceedings of the Nutrition Society, 2004. 63(2): p. 279-286.

57. Dunn, S.E., J.L. Burns, and R.N. Michel, Calcineurin is required for skeletal muscle hypertrophy. Journal of Biological Chemistry, 1999. 274(31): p. 21908-21912.

58. Glass, D.J., Molecular mechanisms modulating muscle mass. Trends in molecular medicine, 2003. 9(8): p. 344-350.

59. Parsons, S.A., et al., Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. Journal of Biological Chemistry, 2004. 279(25): p. 26192-26200.

60. Deldicque, L., et al., Increased IGF mRNA in human skeletal muscle after creatine supplementation. Medicine and science in sports and exercise, 2005. 37(5): p. 731-6.

61. Toigo, M. and U. Boutellier, New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. European journal of applied physiology, 2006. 97(6): p. 643-663.

62. Ruggero, D. and N. Sonenberg, The Akt of translational control. Oncogene, 2005. 24(50): p. 7426-7434.

63. Nader, G.A., T.J. McLoughlin, and K.A. Esser, mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. American Journal of Physiology-Cell Physiology, 2005. 289(6): p. C1457-C1465.

64. Solomon, A. and P. Bouloux, Modifying muscle mass–the endocrine perspective. Journal of Endocrinology, 2006. 191(2): 349-360.

65. Bhasin, S., Regulation of body composition by androgens. Journal of endocrinological investigation, 2003. 26(9): p. 814.

66. Kim, J.-s., J.M. Cross, and M.M. Bamman, Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. American Journal of Physiology-Endocrinology And Metabolism, 2005. 288(6): p. E1110-E1119.

67. Sinha-Hikim, I., et al., Testosterone-induced muscle hypertrophy is associated with an increase in satellite cell number in healthy, young men. American Journal of Physiology-Endocrinology And Metabolism, 2003. 285(1): p. E197-E205.

68. Kawada, S., M. Okuno, and N. Ishii, Testosterone causes decrease in the content of skeletal muscle myostatin. International Journal of Sport and Health Science, 2006. 4: p. 44-48.

69. Jones, J.I. and D.R. Clemmons, Insulin-like growth factors and their binding proteins: biological actions. Endocrine reviews, 1995. 16(1): p. 3-34.

70. Silverthorn, D.U., B.R. Johnson, and W.C. Ober, Human physiology2007: Pearson/Benjamin Cummings.

71. Rosen, C.J., Insulin-like growth factor I and bone mineral density: experience from animal models and human observational studies. Best Practice & Research Clinical Endocrinology & Metabolism, 2004. 18(3): p. 423-435.

72. Baumgartner, R.N., et al., Predictors of skeletal muscle mass in elderly men and women. Mechanisms of ageing and development, 1999. 107(2): p. 123-136.

73. Bermon, S., et al., Responses of total and free insulin-like growth factor-I and insulin-like growth factor binding protein-3 after resistance exercise and training in elderly subjects. Acta physiologica scandinavica, 1999. 165: p. 51-56.

74. Berg, U. and P. Bang, Exercise and circulating insulin-like growth factor I. Hormone Research in Paediatrics, 2005. 62(Suppl. 1): p. 50-58.

75. Bonnefoy, M., et al., Physical activity and dehydroepiandrosterone sulphate, insulin-like growth factor I and testosterone in healthy active elderly people. Age and ageing, 1998. 27(6): p. 745-752.

Mohan, S., D. Baylink, and J. Pettis, Insulin-like growth factor (IGF)-binding proteins in serum–do they have additional roles besides modulating the endocrine IGF actions? The Journal of clinical endocrinology and metabolism, 1996. 81(11): p. 3817.

77. Kalus, W., et al., Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. The EMBO journal, 1998. 17(22): p. 6558-6572.

78. Delafontaine, P., Y.-H. Song, and Y. Li, Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arteriosclerosis, thrombosis, and vascular biology, 2004. 24(3): p. 435-444.

79. Scarth, J., Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review. Xenobiotica, 2006. 36(2-3): p. 119-218.

80. Mauras, N. and W. Haymond, Are the metabolic effects of GH and IGF-I separable? Growth hormone & IGF research, 2005. 15(1): p. 19-27.

81. Veldhuis, J. and C. Bowers, Human GH pulsatility: an ensemble property regulated by age and gender. Journal of endocrinological investigation, 2003. 26(9): p. 799.

82. Liu, W., et al., Myostatin is a skeletal muscle target of growth hormone anabolic action. Journal of Clinical Endocrinology & Metabolism, 2003. 88(11): p. 5490-5496.

83. Goldspink, G., Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology, 2005. 20(4): p. 232-238.

84. Glass, D.J., Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology, 2005. 37(10): p. 1974-1984.

85. Holick, M.F. and M. Garabedian, Vitamin D: photobiology, metabolism, mechanism of action, and clinical applications. Primer on the metabolic bone diseases and disorders of mineral metabolism. 6th ed. Washington, DC: American Society for Bone and Mineral Research, 2006. 2006: 106-14.

86. JE, H., Guyton and Hall textbook of medical physiology. WB Saunders Company, 2011.

87. BOLAND, R., Role of vitamin D in skeletal muscle function. Endocrine reviews, 1986. 7(4): p. 434-448.

88. Dawson-Hughes, B., et al., Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. New England Journal of Medicine, 1997. 337(10): p. 670-676.

89. LeBoff, M.S., et al., Occult vitamin D deficiency in postmenopausal US women with acute hip fracture. JAMA: the journal of the American Medical Association, 1999. 281(16): p. 1505-1511.

90. Holick, M.F., Vitamin D deficiency. New England Journal of Medicine, 2007. 357(3): p. 266-281.

91. Holick, M.F., Resurrection of vitamin D deficiency and rickets. Journal of Clinical Investigation, 2006. 116(8): p. 2062-2072.

Holick, M.F. High prevalence of vitamin D inadequacy and implications for health. in Mayo Clinic Proceedings. 2006. Elsevier.

93. Bischoff-Ferrari, H.A., et al., Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. The American journal of clinical nutrition, 2006. 84(1): p. 18-28.

94. Liu, P.T., et al., Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006. 311(5768): 1770-1773.

95. Kostka, T., et al., Leg extensor power and dehydroepiandrosterone sulfate, insulin-like growth factor-I and testosterone in healthy active elderly people. European journal of applied physiology, 2000. 82(1-2): p. 83-90.

96. Tissandier, O., et al., Testosterone, dehydroepiandrosterone, insulin-like growth factor 1, and insulin in sedentary and physically trained aged men. European journal of applied physiology, 2001. 85(1-2): p. 177-184.

97. Cappola, A.R., et al., Association of IGF-I levels with muscle strength and mobility in older women. Journal of Clinical Endocrinology & Metabolism, 2001. 86(9): p. 4139-4146.

98. Kunitomi, M., et al., Relationship between reduced serum IGF-I levels and accumulation of visceral fat in Japanese men. International journal of obesity, 2002. 26(3): p. 361-369.

Cappon, J., et al., Effect of brief exercise on circulating insulin-like growth factor I. Journal of Applied Physiology, 1994. 76(6): p. 2490-2496.

100. Bang, P., et al., Exercise‐induced changes in insulin‐like growth factors and their low molecular weight binding protein in healthy subjects and patients with growth hormone deficiency. European journal of clinical investigation, 1990. 20(3): p. 285-292.

101. Mejri, S., et al., GH, IGF-1 and IGF-BP3 responses to submaximal exercise: differences between trained and sedentary subjects. Science & Sports, 2004. 19(2): p. 80-85.

102. Copeland, J. and L. Heggie, IGF‐I and IGFBP-3 during Continuous and Interval Exercise. International journal of sports medicine, 2008. 29(03): p. 182-187.

103. Goekint, M., et al., Strength training does not influence serum brain-derived neurotrophic factor. European journal of applied physiology, 2010. 110(2): p. 285-293.

104. Di Monaco, M., et al., Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Archives of gerontology and geriatrics, 2011. 52(1): p. 71-74.

105. Singh, M.A.F., et al., Methodology and baseline characteristics for the Sarcopenia and Hip Fracture study: a 5-year prospective study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2009. 64(5): p. 568-574.

106. Boirie, Y., Physiopathological mechanism of sarcopenia. JNHA-The Journal of Nutrition, Health and Aging, 2009. 13(8): p. 717-723.

107. Katsanos, C.S., et al., Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. The American journal of clinical nutrition, 2005. 82(5): p. 1065-1073.

108. Fulgoni, V.L., Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003–2004. The American journal of clinical nutrition, 2008. 87(5): p. 1554S-1557S.

109. Liao, L., et al., Steroid receptor coactivator 3 maintains circulating insulin-like growth factor I (IGF-I) by controlling IGF-binding protein 3 expression. Molecular and cellular biology, 2008. 28(7): p. 2460-2469.

110. Houston, D.K., et al., Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. The American journal of clinical nutrition, 2008. 87(1): p. 150-155.

111. Gaffney‐Stomberg, E., et al., Increasing dietary protein requirements in elderly people for optimal muscle and bone health. Journal of the American Geriatrics Society, 2009. 57(6): p. 1073-1079.

112. Campbell, W.W. and H.J. Leidy, Dietary protein and resistance training effects on muscle and body composition in older persons. Journal of the American College of Nutrition, 2007. 26(6): p. 696S-703S.

113. Schurch, M.-A., et al., Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fractureA randomized, double-blind, placebo-controlled trial. Annals of Internal Medicine, 1998. 128(10): p. 801-809.

114. Koopman, R. and L.J. van Loon, Aging, exercise, and muscle protein metabolism. Journal of Applied Physiology, 2009. 106(6): p. 2040-2048.

115. Verdijk, L.B., et al., Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men. The American journal of clinical nutrition, 2009. 89(2): p. 608-616.

116. Rennie, M.J., et al., Branched-chain amino acids as fuels and anabolic signals in human muscle. The Journal of nutrition, 2006. 136(1): p. 264S-268S.

117. Paddon-Jones, D. and B.B. Rasmussen, Dietary protein recommendations and the prevention of sarcopenia: protein, amino acid metabolism and therapy. Current opinion in clinical nutrition and metabolic care, 2009. 12(1): p. 86.

118. Millward, D.J., et al., Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. The American journal of clinical nutrition, 2008. 87(5): p. 1576S-1581S.

119. Kimball, S.R. and L.S. Jefferson, Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. The Journal of nutrition, 2006. 136(1): p. 227S-231S.

120. Kim, J.-S., J.M. Wilson, and S.-R. Lee, Dietary implications on mechanisms of sarcopenia: roles of protein, amino acids and antioxidants. The Journal of nutritional biochemistry, 2010. 21(1): p. 1-13.

121. Fujita, S. and E. Volpi, Amino acids and muscle loss with aging. The Journal of nutrition, 2006. 136(1): p. 277S-280S.

122. Clemmons, D.R., Role of IGF-I in skeletal muscle mass maintenance. Trends in Endocrinology & Metabolism, 2009. 20(7): p. 349-356.

123      Kenny, A.M., et al., Effects of Vitamin D Supplementation on Strength, Physical Function, and Health Perception in Older, Community‐Dwelling Men. Journal of the American Geriatrics Society, 2003. 51(12): p. 1762-1767.

124. Zamora, S.A., et al., Vitamin D supplementation during infancy is associated with higher bone mineral mass in prepubertal girls. Journal of Clinical Endocrinology & Metabolism, 1999. 84(12): p. 4541-4544.

125. Ooms, M.E., et al., Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. Journal of Clinical Endocrinology & Metabolism, 1995. 80(4): p. 1052-1058.

126. Bischoff-Ferrari, H.A., et al., Positive association between 25-hydroxy vitamin D levels and bone mineral density: a population-based study of younger and older adults. The American journal of medicine, 2004. 116(9): p. 634-639.

127. Feldkamp, J., et al., Long-term anticonvulsant therapy leads to low bone mineral density—evidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Experimental and clinical endocrinology & diabetes, 2000. 108(01): p. 37-43.

128. Bischoff-Ferrari, H.A., et al., Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged≥ 60 y. The American journal of clinical nutrition, 2004. 80(3): p. 752-758.

129. Wicherts, I.S., et al., Vitamin D status predicts physical performance and its decline in older persons. Journal of Clinical Endocrinology & Metabolism, 2007. 92(6): p. 2058-2065.

130. Annweiler, C., et al., Fall prevention and vitamin D in the elderly: an overview of the key role of the non-bone effects. Journal of neuroengineering and rehabilitation, 2010. 7(1): p. 50.

131      Gerdhem, P., et al., Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women. Journal of Bone and Mineral Research, 2007. 22(1): p. 127-134.

132. Bischoff, H.A., et al., Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. Journal of Bone and Mineral Research, 2003. 18(2): p. 343-351.

133. Sato, Y., et al., Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovascular Diseases, 2005. 20(3): p. 187-192.

134. Bunout, D., et al., Effects of vitamin D supplementation and exercise training on physical performance in Chilean vitamin D deficient elderly subjects. Experimental gerontology, 2006. 41(8): p. 746-752.

135. Dhesi, J.K., et al., Vitamin D supplementation improves neuromuscular function in older people who fall. Age and ageing, 2004. 33(6): p. 589-595.

136. Visser, M., D.J. Deeg, and P. Lips, Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. Journal of Clinical Endocrinology & Metabolism, 2003. 88(12): p. 5766-5772.

137. Yarasheski, K.E., et al., Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men≥ 76 yr old. American Journal of Physiology-Endocrinology And Metabolism, 1999. 277(1): p. E118-E125.

138. Charette, S., et al., Muscle hypertrophy response to resistance training in older women. Journal of Applied Physiology, 1991. 70(5): p. 1912-1916.

139. Raastad, T., T. Bjøro, and J. Hallen, Hormonal responses to high-and moderate-intensity strength exercise. European journal of applied physiology, 2000. 82(1-2): p. 121-128.

140. Pichard, C., et al., Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects. Nutrition, 2000. 16(4): p. 245-254.

141. Janssen, I., Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. Journal of the American Geriatrics Society, 2006. 54(1): p. 56-62.

142. Castillo, E.M., et al., Sarcopenia in elderly men and women: the Rancho Bernardo study. American journal of preventive medicine, 2003. 25(3): p. 226-231.

143. Thomas, D.R., Sarcopenia. Clinics in geriatric medicine, 2010. 26(2): p. 331-346.

144. Ceglia, L. and S.S. Harris, Vitamin D and its role in skeletal muscle. Calcified tissue international, 2013. 92(2): p. 151-162.

Rockwood, K. and A. Mitnitski, Frailty in relation to the accumulation of deficits. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2007. 62(7): p. 722-727.

146. Rodríguez-Mañas, L., et al., Searching for an operational definition of frailty: a Delphi method based consensus statement. The Frailty Operative Definition-Consensus Conference Project. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2013. 68(1): p. 62-67.

147. Casas-Herrero, A. and M. Izquierdo. Physical exercise as an efficient intervention in frail elderly persons]. in Anales del sistema sanitario de Navarra. 2012.

148. Fukagawa, N.K., et al., Sarcopenia in aging humans: the impact of menopause and disease. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 1995. 50(Special Issue): p. 73-77.

149. Xue, Q.-L., The frailty syndrome: definition and natural history. Clinics in geriatric medicine, 2011. 27(1): p. 1.

150. Yamada, M., et al., Community-based exercise program is cost-effective by preventing care and disability in Japanese frail older adults. Journal of the American Medical Directors Association, 2012. 13(6): p. 507-511.

151. Freiberger, E., et al., Long‐Term Effects of Three Multicomponent Exercise Interventions on Physical Performance and Fall‐Related Psychological Outcomes in Community‐Dwelling Older Adults: A Randomized Controlled Trial. Journal of the American Geriatrics Society, 2012. 60(3): p. 437-446.

152. Izquierdo, M., et al. Resistance training induces positive effects on risk of falls, muscle strength, and dual task performance in oldest old institutionalized frail patients. in MEDICINE AND SCIENCE IN SPORTS AND EXERCISE. 2012. LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.

153. Bemben, D.A., et al., Musculoskeletal responses to high-and low-intensity resistance training in early postmenopausal women. Med Sci Sports Exerc, 2000. 32(11): p. 1949-1957.

154. Kraemer, W.J. and N.A. Ratamess, Fundamentals of resistance training: progression and exercise prescription. Medicine and science in sports and exercise, 2004. 36(4): p. 674-688.

Ceglia, L., Vitamin D and skeletal muscle tissue and function. Molecular aspects of medicine, 2008. 29(6): p. 407-414.

156. Foo, L.H., et al., Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. The Journal of nutrition, 2009. 139(5): p. 1002-1007.

157. Pfeifer, M., et al., Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis. Experimental and clinical endocrinology & diabetes, 2001. 109(02): p. 87-92.

158. Mithal, A., et al., Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporosis international, 2012: 1-12.

Toffanello, E.D., et al., Vitamin D and physical performance in elderly subjects: the Pro. VA study. PloS one, 2012. 7(4): p. e34950.

160. Marantes, I., et al., Is vitamin D a determinant of muscle mass and strength? Journal of Bone and Mineral Research, 2011. 26(12): p. 2860-2871.

161. Glerup, H., et al., Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcified tissue international, 2000. 66(6): p. 419-424.

162. Hasani-Ranjbar, S., et al., Time course responses of serum GH, insulin, IGF-1, IGFBP1, and IGFBP3 concentrations after heavy resistance exercise in trained and untrained men. Endocrine, 2012. 41(1): p. 144-151.

163. Nindl, B.C., et al., Overnight responses of the circulating IGF-I system after acute, heavy-resistance exercise. Journal of Applied Physiology, 2001. 90(4): p. 1319-1326.

164. Sonksen, P., Idiopathic Growth Hormone Deficiency in Adults, Ben Johnson and the Somatopause. Journal of Clinical Endocrinology & Metabolism, 2013. 98(6): 2270-2273.

165. Lichtenwalner, R., et al., Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience, 2001. 107(4): p. 603-613.

Jernström, H., et al., Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiology Biomarkers & Prevention, 2001. 10(4): p. 377-384.

167. Schmitz, K.H., R.L. Ahmed, and D. Yee, Effects of a 9-month strength training intervention on insulin, insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1, and IGFBP-3 in 30–50-year-old women. Cancer Epidemiology Biomarkers & Prevention, 2002. 11(12): 1597-1604.

Hameed, M., et al., The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. The Journal of Physiology, 2004. 555(1): p. 231-240.

169. Sadowski, C.L., et al., GH regulation of IGF-I and suppressor of cytokine signaling gene expression in C2C12 skeletal muscle cells. Endocrinology, 2001. 142(9): p. 3890-3900.

170. Prabhala, A., R. Garg, and P. Dandona, Severe myopathy associated with vitamin D deficiency in western New York. Archives of internal medicine, 2000. 160(8): p. 1199.

171. Roth, S.M., et al., Vitamin D receptor genotype is associated with fat-free mass and sarcopenia in elderly men. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2004. 59(1): p. B10-B15.

172. Duan, C., H. Ren, and S. Gao, Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. General and comparative endocrinology, 2010. 167(3): p. 344-351.

173. Pfeifer, M., et al., Effects of a short-term vitamin D3 and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. Journal of Clinical Endocrinology & Metabolism, 2001. 86(4): p. 1633-1637.

174. Hyppönen, , et al., Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. The Lancet, 2001. 358(9292): p. 1500-1503.

175. Harris, S.S., A.G. Pittas, and N.J. Palermo, A randomized, placebo‐controlled trial of vitamin D supplementation to improve glycaemia in overweight and obese African Americans. Diabetes, Obesity and Metabolism, 2012. 14(9): p. 789-794.

176. Hyppönen, E., et al., 25-hydroxyvitamin D, IGF-1, and metabolic syndrome at 45 years of age A cross-sectional study in the 1958 British Birth Cohort. Diabetes, 2008. 57(2): p. 298-305.

177. Bogazzi, F., et al., Vitamin D status may contribute to serum insulin-like growth factor I concentrations in healthy subjects. Journal of endocrinological investigation, 2011. 34(8): p. e200-3.

 

راهنمای خرید:
  • به مبلغ فوق 1 درصد به عنوان کارمزد از طرف درگاه پرداخت افزوده خواهد شد.
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.

نقد و بررسی‌ها

هنوز بررسی‌ای ثبت نشده است.

اولین کسی باشید که دیدگاهی می نویسد “مبانی نظری و پیشینه پژوهشی تمرين مقاومتی و ويتامين D و کارکرد عضلانی”

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *